Online Structural Health Monitoring and Parameter Estimation for Vibrating Active Cantilever Beams Using Low-Priced Microcontrollers

Author:

Takács Gergely1ORCID,Vachálek Ján1,Rohal’-Ilkiv Boris1

Affiliation:

1. Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Nám Slobody 17, 812 31 Bratislava 1, Slovakia

Abstract

This paper presents a structural health monitoring and parameter estimation system for vibrating active cantilever beams using low-cost embedded computing hardware. The actuator input and the measured position are used in an augmented nonlinear model to observe the dynamic states and parameters of the beam by the continuous-discrete extended Kalman filter (EKF). The presence of undesirable structural change is detected by variations of the first resonance estimate computed from the observed equivalent mass, stiffness, damping, and voltage-force conversion coefficients. A fault signal is generated upon its departure from a predetermined nominal tolerance band. The algorithm is implemented using automatically generated and deployed machine code on an electronics prototyping platform, featuring an economically feasible 8-bit microcontroller unit (MCU). The validation experiments demonstrate the viability of the proposed system to detect sudden or gradual mechanical changes in real-time, while the functionality on low-cost miniaturized hardware suggests a strong potential for mass-production and structural integration. The modest computing power of the microcontroller and automated code generation designates the proposed system only for very flexible structures, with a first dominant resonant frequency under 4 Hz; however, a code-optimized version certainly allows much stiffer structures or more complicated models on the same hardware.

Funder

Slovak Research and Development Agency

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3