Highly Semiconducting One-Dimensional Porous ZnO Nanorod Array Nanogenerators for Mechanical Energy Harvesting Functions

Author:

Lee Dong Jin1,Kumar Ganesan Mohan1,Kim Deuk Young12,Ilanchezhiyan Pugazhendi1ORCID

Affiliation:

1. Quantum-Functional Semiconductor Research Center (QSRC), Institute of Future Technology, Dongguk University-Seoul, Seoul, Republic of Korea

2. Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul, Republic of Korea

Abstract

The development of energy harvesters based on inexpensive inorganic materials has attracted considerable attention to envisage next-generation self-powered electronic devices. In this work, we presented surface modification of ZnO nanorods (NRs) by thermochemical reaction using photoresist (PR) as an etching source. The morphological and microstructural properties of surface-etched ZnO NRs (M: ZnO) were systematically studied in detail through SEM and HRTEM. The morphological results show that the surface-etched NRs possess nanofiber-like porous structures and are penetrated throughout the NRs with high surface area. We fabricated triboelectric nanogenerators (TENG) using M: ZnO NRs with poly (dimethylsiloxane) (PDMS) as negative triboelectric material and mica as positive triboelectric material. The prepared M: ZnO NR TENG successfully delivered an output voltage of up to 20 V and a current density of 3.2 μA cm−2, which is ∼1.5 times higher than those observed for smooth ZnO NRs, respectively. The prepared M: ZnO NR TENG device can be able to lit 24 red light-emitting diodes (LEDs) as the power source. Finally, to demonstrate the practical applications of M: ZnO NR TENG, it was attached to the human body (elbow, knee, wrist, and heel) and efficiently harvested the energy from daily human activities.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3