A Novel Method of Pure Output Modal Identification Based on Multivariate Variational Mode Decomposition

Author:

Li TaoORCID,Hou RuiORCID,Zheng Kangkang,Li Lingfeng,Liu Bo

Abstract

This paper proposes a novel parameterized frequency‐domain modal parameter identification method, called direct modal variational mode decomposition (DMVMD), based on the multivariate variational mode decomposition (MVMD) framework and the principle of modal superposition. Under the constraint of normalized mode shapes, this paper theoretically derives the relationship between multivariate variational mode decomposition and the natural frequencies and mode shapes of structural systems. The aim is to extract K response modes and their corresponding mode shapes from the excited C‐dimensional vibration signals of the measured component’s response. First, the measured multichannel vibration signals are decomposed into IMFs aligned with K‐order natural frequencies using multivariate variational mode decomposition (MVMD). Then, the Hilbert equations and mode shape normalization constraints are used to solve the structural natural frequencies and mode shapes. Furthermore, the proposed multimodal identification algorithm has been validated through numerical simulations and experimental examples, demonstrating its high accuracy and robustness in modal identification. Compared to the existing multimodal algorithms related to variational mode decomposition, the proposed method is more direct and elegant. This method has been successfully applied to the modal parameter identification of subway tunnel structures, enabling accurate determination of the location of tunnel damage through analysis of the identified modal parameters.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

China University of Mining and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3