Evaluation of Larval Sea Lamprey Petromyzon marinus Growth in the Laboratory: Influence of Temperature and Diet

Author:

Hume John B.1ORCID,Bennis Skyler2,Bruning Tyler2,Docker Margaret F.34,Good Sara34,Lampman Ralph34,Rinchard Jacques5,Searcy Trisha2,Wilkie Michael P.6,Johnson Nicholas S.2

Affiliation:

1. Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA

2. US Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, Rogers, MI 49759, USA

3. Department of Biological Sciences, University of Manitoba, MB R3T 2N2, Winnipeg, Canada

4. Pacific Lamprey Project, Department of Natural Resources, Yakama Nation, Fisheries Resource Management Program, PO Box 151, Toppenish, WA 98948, USA

5. Department of Environmental Science and Ecology, State University of New York Brockport, Brockport, Rochester, NY 14420, USA

6. Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada

Abstract

Conservation aquaculture provides a means for promoting environmental stewardship, useful both in the context of restoring native species and limiting the production of invasive species. Aquaculture of lampreys is a relatively recent endeavor aimed primarily at producing animals to support the restoration of declining native populations. However, in the Laurentian Great Lakes, where sea lamprey Petromyzon marinus are invasive, the ability to acquire a reliable source of certain life stages would be a significant benefit to those controlling their populations and studying the species. Here, we apply methodologies developed for Pacific lamprey Entosphenus tridentatus restoration to investigate the feasibility of rearing larval sea lamprey under laboratory conditions. In two experiments lasting 3 and 9 months, we tested the effects of different dietary sources and water temperature (ambient and controlled) on the survival and growth of wild-caught larvae. Rearing conditions had no effect on mortality, as larval survival was 100% in both experiments. Growth was significantly affected by water temperature, with the highest average daily growth rates observed at 22 and 15°C (0.14 mm day−1) and lowest at 8°C (0.06 mm day−1). Diets of yeast alone (0.19 and 0.21 g L−1) performed better than those comprising a mixture of yeast and other material when fed 3 times weekly (rice flour, wheat flour, fish meal; 0.19 and 0.32 g L−1). Averaged across the three constant temperatures (8, 15, and 22°C), larvae fed on yeast grew 0.13 mm day−1 and 0.01 g day−1, whereas on yeast + fish meal, they grew 0.09 mm day−1 and 0.01 g day−1. At ambient temperature (4–20°C), larvae fed on yeast grew 0.15 mm day−1 and 0.01 g day−1, whereas those fed on yeast + wheat flour grew 0.13 mm day−1 and 0.008 g day−1 and those fed on yeast + rice flour grew 0.12 mm day−1 and 0.009 g day−1. An experimental duration of 90 days was sufficient to detect significant changes to larval sea lamprey growth stemming from temperature variation. Overall, rearing of sea lamprey in captivity appears feasible at low density (31–32 g m−2 and 17–25 larvae m−2), but uncertainties remain regarding the most appropriate means of providing adequate feed for these fish in high-density conditions.

Funder

Great Lakes Fishery Commission

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3