An Incremental Two-Dimensional Principal Component Analysis for Object Recognition

Author:

Ge Weimin12,Sun Mingyue2ORCID,Wang Xiaofeng12ORCID

Affiliation:

1. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechanical System, Tianjin 300384, China

2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education (Tianjin University of Technology), Tianjin 300384, China

Abstract

Two-dimensional principal component analysis algorithm (2DPCA) can be performed in the batch mode and can not meet the real-time requirements of the video stream. To overcome these limitations, the incremental learning of the candid covariance-free incremental PCA (CCIPCA) is innovated to the existing 2DPCA, and the called incremental 2DPCA (I2DPCA) is firstly presented to incrementally compute the principal components of a sequence of samples directly on the 2D image matrices without estimating the covariance matrices. Therefore, the I2DPCA can improve the feature extraction speed and reduce the required memory. However, the variations between the column direction, generally neglected, are also useful for the high-accuracy object recognition. Thus, another incremental sequential row-column 2DPCA algorithm (IRC2DPCA), based on the proposed I2DPCA algorithm, is also proposed. The IRC2DPCA can compress the image matrices in the row and column direction, and the feature matrices extracted by the IRC2DPCA are with less dimensions than the I2DPCA. The substantial experimental results show that the IRC2DPCA, compared with the other three algorithms, can improve the convergence rates and the recognition rates, compress the dimensions of the feature matrices, and reduce the feature extraction time and the classification time.

Funder

National Key R & D Plan of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3