Modulation of Cytokines Production by Indomethacin Acute Dose during the Evolution of Ehrlich Ascites Tumor in Mice

Author:

Gentile Luciana Boffoni12,Queiroz-Hazarbassanov Nicolle3,Massoco Cristina de Oliveira3,Fecchio Denise1

Affiliation:

1. Department of Pathology, School of Medicine, São Paulo State University (UNESP), 18618-970 Botucatu, SP, Brazil

2. Laboratory of Glycobiology, Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, RJ, Brazil

3. Applied Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, 05508-900 São Paulo, SP, Brazil

Abstract

The aim of the present study was to investigate the influence of a nonselective COX1/COX2 inhibitor (indomethacin) on tumor growth of Ehrlich Ascites Tumor (EAT) in mice, using as parameters the tumor growth and cytokine profile. Mice were inoculated with EAT cells and treated with indomethacin. After 1, 3, 6, 10, and 13 days the animals were evaluated for the secretion of TNFα, IL-1α, IL-2, IL-4, IL-6, IL-10, and IL-13 and PGE2level in peritoneal cavity. The results have shown that EAT induces PGE2production and increases tumor cells number from the 10th day. The cytokine profile showed EAT induces production of IL-6 from 10th day and of IL-2 on 13th day; the other studied cytokines were not affected in a significant way. The indomethacin treatment of EAT-bearing mice inhibited the tumor growth and PGE2synthesis from the 10th day. In addition, the treatment of EAT-bearing mice with indomethacin has stimulated the IL-13 production and has significantly inhibited IL-6 in the 13th day of tumor growth. Taken together, the results have demonstrated that EAT growth is modulated by PGE2and the inhibition of the tumor growth could be partly related to suppression of IL-6 and induction of IL-13.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3