Thermal Sensor Circuit Using Thermography for Temperature-Controlled Laser Hyperthermia

Author:

Nomura Shinsuke1,Arake Masashi2,Morimoto Yuji2ORCID,Tsujimoto Hironori1,Miyazaki Hiromi3,Saitoh Daizoh3,Shinomiya Nariyoshi2,Hase Kazuo1,Yamamoto Junji1,Ueno Hideki1

Affiliation:

1. Department of Surgery, National Defense Medical College, Tokorozawa, Japan

2. Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan

3. Division of Traumatology, National Defense Medical College Research Institute, Tokorozawa, Japan

Abstract

Laser hyperthermia is a powerful therapeutic modality that suppresses the growth of proliferative lesions. In hyperthermia, the optimal temperature range is dependent on the disease; thus, a temperature-driven laser output control system is desirable. Such a laser output control system, integrated with a thermal sensor circuit based on thermography, has been established. In this study, the feasibility of the developed system was examined by irradiating mouse skin. The system is composed of a thermograph, a thermal sensor circuit (PC and microcontroller), and an infrared laser. Based on the maximum temperature in the laser-irradiated area acquired every 100 ms during irradiation, the laser power was controlled such that the maximum temperature was maintained at a preset value. Temperature-controlled laser hyperthermia using the thermal sensor circuit was shown to suppress temperature fluctuations during irradiation (SD ~ 0.14°C) to less than 1/10 of those seen without the thermal sensor circuit (SD ~ 1.6°C). The thermal sensor circuit was able to satisfactorily stabilize the temperature at the preset value. This system can therefore provide noncontact laser hyperthermia with the ability to maintain a constant temperature in the irradiated area.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3