Synthesis and Validation of a Weatherproof Nursery Design That Eliminates Tropical Evening-Fever Syndrome in Neonates

Author:

Amadi Hippolite O.12,Mohammed Lawal I.2,Kawuwa Mohammed B.3,Oyedokun Abdulquddus2,Mohammed Hajjah2

Affiliation:

1. Department of Bioengineering, Imperial College London, SW7 2AZ, UK

2. Neonatal Unit, Department of Paediatrics, Federal Medical Centre Nguru, Nigeria

3. Department of Obstetrics and Gynaecology, Federal Medical Centre Nguru, Nigeria

Abstract

Neonatal thermal stabilisation can become challenging when uncontrollable factors result in excessive body temperature. Hyperthermia can rapidly slow down baby’s progress and response to treatment. High sunlight intensity in tropical countries such as Nigeria manifests in incessant high neonatal temperatures towards early evenings. The ugly consequences of this neonatal evening-fever syndrome (EFS) can only be eradicated by the development of a controlled weatherproof nursery environment. Two laboratories and a ‘control ward’ were applied. Lab-2 was a renovation of an existing room in a manner that could correct an existing nursery. Lab-1 was an entirely new building idea. The laboratories were assessed based on comparative ability to maintain environmental coolness and neonatal thermal stability during hot days. Data collection continued for 12 full calendar months. On average, at evaluated out-wind peak temperature of 43°C (range: 41°C–46°C), the control-ward peak was at 39°C, Lab-2 peak at 36°C, and Lab-1 peak at 33°C. All incubators in the control overheated during the hot periods but there was no overheating in Lab-1. Forty-four (86%) of sampled babies were fever-quenched by water sponging 131 times in the control whilst only one baby received same treatment in Lab-1. Nursery designs patterned after Lab-1 can significantly reduce EFS-induced neonatal morbidity.

Publisher

Hindawi Limited

Subject

Pediatrics, Perinatology, and Child Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3