Vertical Dynamic Response of Pile Embedded in Layered Transversely Isotropic Soil

Author:

Wu Wenbing1ORCID,Jiang Guosheng1,Huang Shenggen1,Leo Chin Jian2

Affiliation:

1. Engineering Faculty, China University of Geosciences, Wuhan, Hubei 430074, China

2. School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, Sydney, NSW 2751, Australia

Abstract

The dynamic response of pile embedded in layered transversely isotropic soil and subjected to arbitrary vertical harmonic force is investigated. Based on the viscoelastic constitutive relations for a transversely isotropic medium, the dynamic governing equation of the transversely isotropic soil is obtained in cylindrical coordinates. By introducing the fictitious soil pile model and the distributed Voigt model, the governing equations of soil-pile system are also derived. Firstly, the vertical response of the soil layer is solved by using the Laplace transform technique and the separation of variables technique. Secondly, the analytical solution of velocity response in the frequency domain and its corresponding semianalytical solution of velocity response in the time domain are derived by means of inverse Fourier transform and convolution theorem. Finally, based on the obtained solutions, a parametric study has been conducted to investigate the influence of the soil anisotropy on the vertical dynamic response of pile. It can be seen that the influence of the shear modulus of soil in the vertical plane on the dynamic response of pile is more notable than the influence of the shear modulus of soil in the horizontal plane on the dynamic response of pile.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3