Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson’s Disease Based on Network Pharmacology

Author:

Lin Dongtao1,Zeng Yudan1,Tang Deyu23,Cai Yongming23ORCID

Affiliation:

1. College of Public Health, Guangdong Pharmaceutical University, China

2. College of Medical Information Engineering, Guangdong Pharmaceutical University, China

3. Guangdong Provincial TCM Precision Medicine Big Data Engineering Technology Research Center, China

Abstract

Background. Parkinson’s disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. Liuwei Dihuang (LWDH) pills have a good effect on PD, but its mechanism remains unclear. Network pharmacology is the result of integrating basic theories and research methods of medicine, biology, computer science, bioinformatics, and other disciplines, which can systematically and comprehensively reflect the mechanism of drug intervention in disease networks. Methods. The main components and targets of herbs in LWDH pills were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Its active components were screened based on absorption, distribution, metabolism, and excretion (ADME); the PD-related targets were obtained from the Genecards, OMIM, TTD, and DRUGBANK databases. We used R to take the intersection of LWDH- and PD-related targets and Cytoscape software to construct the drug-component-target network. Moreover, STRING and Cytoscape software was used to analyze protein–protein interactions (PPI), construct a PPI network, and explore potential protein functional modules in the network. The Metascape platform was used to perform KEGG pathway and GO function enrichment analyses. Finally, molecular docking was performed to verify whether the compound and target have good binding activity. Results. After screening and deduplication, 210 effective active ingredients, 204 drug targets, 4333 disease targets, and 162 drug-disease targets were obtained. We consequently constructed a drug-component-targets network and a PPI-drug-disease-targets network. The results showed that the hub components of LWDH pills were quercetin, stigmasterol, kaempferol, and beta-sitosterol; the hub targets were AKT1, VEGFA, and IL6. GO and KEGG enrichment analyses showed that these targets are involved in neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic processes, membrane rafts, MAPK signaling pathways, cellular senescence, and other biological processes. Molecular docking showed that the hub components were in good agreement with the hub targets. Conclusion. LWDH pills have implications for the treatment of PD since they contain several active components, target multiple ligands, and activate various pathways. The hub components possibly include quercetin, stigmasterol, kaempferol, and beta-sitosterol and act through pairing with hub targets, such as AKT1, VEGFA, and IL6, to regulate neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic process, membrane raft, MAPK signaling pathway, and cellular senescence for the treatment of PD.

Funder

Guangdong Provincial Natural fund project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference51 articles.

1. Parkinson's disease

2. Parkinson's Disease; Epidemiology

3. Guidelines for the treatment of Parkinson's disease in China (Fourth Edition) [J];Parkinson's Disease and Movement Disorders Group of Neurology Branch of Chinese Medical Association;Chinese Journal of Neurology,2020

4. Pharmacological treatment of Parkinson disease: a review [J];B. S. Connolly;JAMA,2016

5. Levodopa in the treatment of Parkinson’s disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3