Affiliation:
1. School of Design and Art, Xijing University, Xi’an, Shaanxi 710123, China
Abstract
The three-dimensional reconstruction of outdoor landscape is of great significance for the construction of digital city. With the rapid development of big data and Internet of things technology, when using the traditional image-based 3D reconstruction method to restore the 3D information of objects in the image, there will be a large number of redundant points in the point cloud and the density of the point cloud is insufficient. Based on the analysis of the existing three-dimensional reconstruction technology, combined with the characteristics of outdoor garden scene, this paper gives the detection and extraction methods of relevant feature points and adopts feature matching and repairing the holes generated by point cloud meshing. By adopting the candidate strategy of feature points and adding the mesh subdivision processing method, an improved PMVS algorithm is proposed and the problem of sparse point cloud in 3D reconstruction is solved. Experimental results show that the proposed method not only effectively realizes the three-dimensional reconstruction of outdoor garden scene, but also improves the execution efficiency of the algorithm on the premise of ensuring the reconstruction effect.
Subject
Computer Science Applications,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献