Predicting Heavy Oil Production by Hybrid Data-Driven Intelligent Models

Author:

Qin Songhai12ORCID,Liu Jianyi1,Yang Xinping3,Li Yiyang4,Zhang Lifeng3,Liu Zhibin1

Affiliation:

1. State Key Lab of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

2. Development Department, Petro China Southwest Oil & Gasfield Company, CNPC, Chengdu, Sichuan 610051, China

3. Research Institute of Exploration and Development, Xinjiang Oilfield Company, CNPC, Karamay, Xinjiang 834000, China

4. Heavy Oil Development Company, Xinjiang Oilfield Company, CNPC, Karamay, Xinjiang 834000, China

Abstract

It is difficult to determine the main control factors owing to the complex geological conditions of heavy oil reservoirs, including high viscosity, a wide range of variation of crude oil, and the great difference in production between different recovery methods. In this context, main control factors of heavy oil production in different recovery methods are analyzed and obtained based on the Apriori algorithm. The prediction of heavy oil production is faced with problems such as low prediction precision and insufficient data usage. Therefore, a novel intelligent simulation and prediction model of data-driven heavy oil production with time-varying characteristics is established based on differential simulation, machine learning, and intelligent optimization theory, which overcomes the defects of nonlinear, multifactor, and low fitting precision of dynamic data of heavy oil development. The parameters of the heavy oil production time-varying simulation model are identified by the least square support vector machine (LSSVM) to realize the intelligent prediction of the production. Numerical experiments show that the prediction result of the novel intelligent simulation and prediction model is better than the BP neural network model and the GM (1, N) model. This study provides a novel feasible method for data-driven heavy oil production prediction, and it can be helpful in further study of data-driven heavy oil production.

Funder

Major Program of Sichuan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference33 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3