Identifying Infliximab- (IFX-) Responsive Blood Signatures for the Treatment of Rheumatoid Arthritis

Author:

Ding ShiJian1ORCID,Li ZhanDong2ORCID,Zeng Tao3ORCID,Zhang Yu-Hang4ORCID,Huang Tao35ORCID,Cai Yu-Dong1ORCID

Affiliation:

1. School of Life Sciences, Shanghai University, Shanghai, China

2. College of Food Engineering, Jilin Engineering Normal University, Changchun, China

3. Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China

4. Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

5. CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China

Abstract

Rheumatoid arthritis (RA) is a severe chronic pathogenic inflammatory abnormality that damages small joints. Comprehensive diagnosis and treatment procedures for RA have been established because of its severe symptoms and relatively high morbidity. Medication and surgery are the two major therapeutic approaches. Infliximab (IFX) is a novel biological agent applied for the treatment of RA. IFX improves physical functions and benefits the achievement of clinical remission even under discontinuous medication. However, not all patients react to IFX, and distinguishing IFX-sensitive and IFX-resistant patients is quite difficult. Thus, how to predict the therapeutic effects of IFX on patients with RA is one of the urgent translational medicine problems in the clinical treatment of RA. In this study, we present a novel computational method for the identification of the applicable and substantial blood gene signatures of IFX sensitivity by liquid biopsy, which may assist in the establishment of a clinical drug sensitivity test standard for RA and contribute to the revelation of unique IFX-associated pharmacological mechanisms.

Funder

Shanghai Sailing Program

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3