A Multilayer Perceptron Neural Network with Selective-Data Training for Flight Arrival Delay Prediction

Author:

Alla Hajar1ORCID,Moumoun Lahcen1ORCID,Balouki Youssef1ORCID

Affiliation:

1. Laboratory of Mathematics, Computer and Engineering Sciences, Mathematics and Computer Science Department, Faculty of Science and Techniques, Hassan First University of Settat, Settat, Morocco

Abstract

Flight delay is the most common preoccupation of aviation stakeholders around the world. Airlines, which suffer from a monetary and customer loyalty loss, are the most affected. Various studies have attempted to analyze and solve flight delays using machine learning algorithms. This research aims to predict flights’ arrival delay using Artificial Neural Network (ANN). We applied a MultiLayer Perceptron (MLP) to train and test our data. Two approaches have been adopted in our work. In the first one, we used historical flight data extracted from Bureau of Transportation Statistics (BTS). The second approach improves the efficiency of the model by applying selective-data training. It consists of selecting only most relevant instances from the training dataset which are delayed flights. According to BTS, a flight whose difference between scheduled and actual arrival times is 15 minutes or greater is considered delayed. Departure delays and flight distance proved to be very contributive to flight delays. An adjusted and optimized hyperparameters using grid search technique helped us choose the right architecture of the network and have a better accuracy and less error than the existing literature. The results of both traditional and selective training were compared. The efficiency and time complexity of the second method are compared against those of the traditional training procedure. The neural network MLP was able to predict flight arrival delay with a coefficient of determination R 2 of 0.9048, and the selective procedure achieved a time saving and a better R 2 score of 0.9560. To enhance the reliability of the proposed method, the performance of the MLP was compared with that of Gradient Boosting (GB) and Decision Trees (DT). The result is that the MLP outperformed all existing benchmark methods.

Funder

Laboratory of Mathematics, Computer, and Engineering Sciences

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3