Affiliation:
1. Laboratory of Mathematics, Computer and Engineering Sciences, Mathematics and Computer Science Department, Faculty of Science and Techniques, Hassan First University of Settat, Settat, Morocco
Abstract
Flight delay is the most common preoccupation of aviation stakeholders around the world. Airlines, which suffer from a monetary and customer loyalty loss, are the most affected. Various studies have attempted to analyze and solve flight delays using machine learning algorithms. This research aims to predict flights’ arrival delay using Artificial Neural Network (ANN). We applied a MultiLayer Perceptron (MLP) to train and test our data. Two approaches have been adopted in our work. In the first one, we used historical flight data extracted from Bureau of Transportation Statistics (BTS). The second approach improves the efficiency of the model by applying selective-data training. It consists of selecting only most relevant instances from the training dataset which are delayed flights. According to BTS, a flight whose difference between scheduled and actual arrival times is 15 minutes or greater is considered delayed. Departure delays and flight distance proved to be very contributive to flight delays. An adjusted and optimized hyperparameters using grid search technique helped us choose the right architecture of the network and have a better accuracy and less error than the existing literature. The results of both traditional and selective training were compared. The efficiency and time complexity of the second method are compared against those of the traditional training procedure. The neural network MLP was able to predict flight arrival delay with a coefficient of determination
of 0.9048, and the selective procedure achieved a time saving and a better
score of 0.9560. To enhance the reliability of the proposed method, the performance of the MLP was compared with that of Gradient Boosting (GB) and Decision Trees (DT). The result is that the MLP outperformed all existing benchmark methods.
Funder
Laboratory of Mathematics, Computer, and Engineering Sciences
Subject
Computer Science Applications,Software
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献