Numerical Analysis of Multiple Factors Affecting Hydraulic Fracturing in Heterogeneous Reservoirs Using a Coupled Hydraulic-Mechanical-Damage Model

Author:

Xu Tao1,Zhai Mingyang2ORCID,Huang Bo1,Zhang Liaoyuan1,Li Aishan1,Zhang Quansheng1,Zhang Zilin1,Wang Lei1,Li Lianchong2

Affiliation:

1. Shengli Oilfield Branch Company, SINOPEC, Dongying 257000, China

2. Center of Rock Instability and Seismicity Research, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

Abstract

Hydraulic fracturing performance, affected by multiple factors, was essential to the economic exploitation of oil and gas in heterogeneous unconventional reservoirs. Multifactor analysis can gain insight into the fracturing response of reservoirs and in turn optimize the treatment design. Based on characterizations of the geological setting of a heterogeneous glutenite reservoir, the hydraulic fracture (HF) initiation and propagation process, as well as the stimulated reservoir volume (SRV), were simulated and analyzed using a coupled hydraulic-mechanical-damage model. The Weibull distribution was employed to describe rock heterogeneity. The numerical model was verified with microseism (MS) interpretation results of HF geometry. A multifactor analysis and optimization workflow integrating response surface methodology, central composite design (CCD), and numerical simulations was proposed to investigate the coupling effects of multiple geomechanical and hydrofracturing factors on SRV and identify the optimum design of fracturing treatment. The results showed that the horizontal stress difference and injection rate were the most significant factors to control the SRV. Increasing the injection rate and reducing fluid viscosity may contribute to improving the SRV. It is more difficult to increase the SRV at higher horizontal stress difference than at lower horizontal stress difference. The multifactor analysis and optimization workflow introduced in this work was a practical and effective method to control the HF geometry and improve the SRV. This study provided a deep understanding of the hydraulic fracturing mechanism and possessed theoretical significance for treatment design.

Funder

National Science and Technology Major Project of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3