Pipelined XPath Query Based on Cost Optimization

Author:

Chen Rongxin12ORCID,Wang Zongyue1ORCID,Hong Yuling1

Affiliation:

1. Computer Engineering College, Jimei University, Xiamen 361021, China

2. Digital Fujian Big Data Modeling and Intelligent Computing Institute, Xiamen 361021, China

Abstract

XPath query is the key part of XML data processing, and its performance is usually critical for XML applications. In the process of XPath query, there is inherent seriality between query steps, which makes it difficult to parallelize the query effectively as a whole. On the other hand, although XPath query has the characteristics of data stream processing and is suitable for pipeline processing, the data flow of each query step usually varies a lot, which results in limited performance under multithreading conditions. In this paper, we propose a pipelined XPath query method (PXQ) based on cost optimization. This method uses pipelined query primitives to process query steps based on relation index. During pipeline construction, a cost estimation model based on XML statistics is proposed to estimate the cost of the query primitive and provide guidance for the creation of a pipeline phase through the partition of query primitive sequence. The pipeline construction technique makes full use of available worker threads and optimizes the load balance between pipeline stages. The experimental results show that our method can adapt to the multithreaded environment and stream processing scenarios of XPath query, and its performance is better than the existing typical query methods based on data parallelism.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference33 articles.

1. Semistructured data;P. Buneman

2. XML path language (XPath);J. Robie,2017

3. Parallelization of XPath queries using multi-core processors;R. Bordawekar

4. Parallel XPath evaluation based on node relation matrix;R. Chen;Journal of Computational Information Systems,2013

5. Parallelization of XPath queries using modern XQuery processors;S. Sato;New Trends in Databases and Information Systems. ADBIS,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel XPath query based on cost optimization;The Journal of Supercomputing;2021-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3