A Mixture of Regular Vines for Multiple Dependencies

Author:

Alanazi Fadhah Amer1ORCID

Affiliation:

1. General Science Department, Prince Sultan University, Riyadh, Saudi Arabia

Abstract

To uncover complex hidden dependency structures among variables, researchers have used a mixture of vine copula constructions. To date, these have been limited to a subclass of regular vine models, the so-called drawable vine, fitting only one type of bivariate copula for all variable pairs. However, the variation of complex hidden correlations from one pair of variables to another is more likely to be present in many real datasets. Single-type bivariate copulas are unable to deal with such a problem. In addition, the regular vine copula model is much more capable and flexible than its subclasses. Hence, to fully uncover and describe complex hidden dependency structures among variables and provide even further flexibility to the mixture of regular vine models, a mixture of regular vine models, with a mixed choice of bivariate copulas, is proposed in this paper. The model was applied to simulated and real data to illustrate its performance. The proposed model shows significant performance over the mixture of R-vine densities with a single copula family fitted to all pairs.

Publisher

Hindawi Limited

Subject

Statistics and Probability

Reference54 articles.

1. Fonctions de répartition á n dimensions et leurs marges;A. Sklar;IEEE Transactions on Power Systems,1959

2. A mixture copula Bayesian network model for multimodal genomic data

3. Computationally efficient bayesian estimation of high dimensional copulas with discrete and mixed margins;D. Gunawan,2016

4. Dependence patterns across financial markets: a mixed copula approach

5. The approximation properties of copulas by mixtures;M. A. Khaled,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3