To Improve the Real-Time Performance of Airborne Data Link Communication System

Author:

Yao Gang1ORCID

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

Abstract

Ground-to-air data link communication has the advantages of fast transmission rate, strong anti-interference ability, and large data communication volume and has been widely used in the field of civil aviation. This article mainly studies the measures to improve the real-time performance of the airborne data link communication system. The design of the hardware platform of the jamming environment simulator needs to comprehensively consider the implementation complexity of the jamming environment model and the real-time simulation method adopted by the UAV data link system. This paper uses the multicore and multithread in the Linux operating system to simulate the functions of the original data link communication system and uses the TFT screen to display the data communication process in the multicore and multithread design scheme. When evaluating and scoring the evaluation indicators, it must be carried out in accordance with certain standards. However, most of the indicators cannot be directly assessed quantitatively only through certain specific values. This article mainly uses the AHP method to analyze the weight of indicators. In the simulation, user information is generated by a random code generator and then distributed to each branch through serial-to-parallel conversion (S/P), and the spreading process is completed by long-code spreading on each branch, respectively, by BPSK. It is modulated on different carriers to form a transmission signal; the signal passes through a Gaussian white noise channel, and a certain frequency offset noise is added at the same time to reach the receiving end; the receiving end uses correlated demodulation, and after despreading, the error rate is counted. The data shows that under different distances, the frame loss rate of the data link is different. The frame loss rate in the 500 m range is about 1%, and the frame loss rate in the 2 km range is about 2.3%. The results show that the real-time performance of the data link communication system in this paper has been greatly improved.

Funder

Shaanxi Provincial Technology Innovation Special Project (fund), Scientific and Technological Achievement Transfer and Promotion Plan

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3