BEZ235 Increases the Sensitivity of Hepatocellular Carcinoma to Sorafenib by Inhibiting PI3K/AKT/mTOR and Inducing Autophagy

Author:

Cao Weiya12ORCID,Liu Xueke13ORCID,Zhang Yinci12ORCID,Li Amin12ORCID,Xie Yinghai4,Zhou Shuping4,Song Li12,Xu Ruyue12,Ma Yongfang12,Cai Shiyu12,Tang Xiaolong12ORCID

Affiliation:

1. Medical School, Anhui University of Science & Technology, Huainan 232001, China

2. Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241000, China

3. Department of Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China

4. First Affiliated Hospital of Medical College, Anhui University of Science & Technology, Huainan 232001, China

Abstract

Acquired resistance of hepatocellular carcinoma (HCC) to sorafenib (SFB) is the main reason for the failure of SFB treatment of the cancer. Abnormal activation of the PI3K/AKT/mTOR pathway is important in the acquired resistance of SFB. Therefore, we investigated whether BEZ235 (BEZ) could reverse acquired sorafenib resistance by targeting the PI3K/mTOR pathway. A sorafenib-resistant HCC cell line Huh7R was established. MTT assay, clone formation assay, flow cytometry, and immunofluorescence were used to analyze the effects of BEZ235 alone or combined with sorafenib on cell proliferation, cell cycle, apoptosis, and autophagy of Huh7 and Huh7R cells. The antitumor effect was evaluated in animal models of Huh7R xenografts in vivo. Western blot was used to detect protein levels of the PI3K/AKT/mTOR pathway and related effector molecules. In vitro results showed that the Huh7R had a stronger proliferation ability and antiapoptosis effect than did Huh7, and sorafenib had no inhibitory effect on Huh7R. SFB + BEZ inhibited the activation of the PI3K/AKT/mTOR pathway caused by sorafenib. Moreover, SFB + BEZ inhibited the proliferation and cloning ability, blocked the cell cycle in the G0/G1 phase, and promoted apoptosis in the two cell lines. The autophagy level in Huh7R cells was higher than in Huh7 cells, and BEZ or SFB + BEZ further promoted autophagy in the two cell lines. In vivo, SFB + BEZ inhibited tumor growth by inducing apoptosis and autophagy. We concluded that BEZ235 enhanced the sensitivity of sorafenib through suppressing the PI3K/AKT/mTOR pathway and inducing autophagy. These observations may provide the experimental basis for sorafenib combined with BEZ235 in trial treatment of HCC.

Funder

Huainan Science and Technology Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3