Spatio-Temporal Segmented Traffic Flow Prediction with ANPRS Data Based on Improved XGBoost

Author:

Sun Bo12ORCID,Sun Tuo13ORCID,Jiao Pengpeng1ORCID

Affiliation:

1. Beijing Key Laboratory of General Aviation Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

3. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

Abstract

Traffic prediction is highly significant for intelligent traffic systems and traffic management. eXtreme Gradient Boosting (XGBoost), a scalable tree lifting algorithm, is proposed and improved to predict more high-resolution traffic state by utilizing origin-destination (OD) relationship of segment flow data between upstream and downstream on the highway. In order to achieve fine prediction, a generalized extended-segment data acquirement mode is added by incorporating information of Automatic Number Plate Recognition System (ANPRS) from exits and entrances of toll stations and acquired by mathematical OD calculation indirectly without cameras. Abnormal data preprocessing and spatio-temporal relationship matching are conducted to ensure the effectiveness of prediction. Pearson analysis of spatial correlation is performed to find the relevance between adjacent roads, and the relative importance of input modes can be verified by spatial lag input and ordinary input. Two improved models, independent XGBoost (XGBoost-I) with individual adjustment parameters of different sections and static XGBoost (XGBoost-S) with overall adjustment of parameters, are conducted and combined with temporal relevant intervals and spatial staggered sectional lag. The early_stopping_rounds adjustment mechanism (EAM) is introduced to improve the effect of the XGBoost model. The prediction accuracy of XGBoost-I-lag is generally higher than XGBoost-I, XGBoost-S-lag, XGBoost-S, and other baseline methods for short-term and long-term multistep ahead. Additionally, the accuracy of the XGBoost-I-lag is evaluated well in nonrecurrent conditions and missing cases with considerable running time. The experiment results indicate that the proposed framework is convincing, satisfactory, and computationally reasonable.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference46 articles.

1. Short-term traffic and travel time prediction models;J. W. C. Van Lint;Artificial Intelligence Applications to Critical Transportation Issues,2012

2. Perspectives on Future Transportation Research: Impact of Intelligent Transportation System Technologies on Next-Generation Transportation Modeling

3. Short-term traffic forecasting: Where we are and where we’re going

4. Missing data detection and imputation for urban ANPR system using an iterative tensor decomposition approach

5. Optimization and deployment of vehicle trajectory prediction scheme based on real-time ANPR traffic big data;Z. Long

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3