AI-Driven Multiobjective Scheduling Algorithm of Flood Control Materials Based on Pareto Artificial Bee Colony

Author:

Liu Banteng1ORCID,Lu Junjie2,Chen Yourong1,Sun Ping1,Zhao Kehua1,Han Meng3ORCID,Zhang Rengong4,Yin Zegao5

Affiliation:

1. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China

2. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangshu 213164, China

3. Data-Driven Intelligence Research (DIR) Lab, Kennesaw State University, Marietta, GA 30060, USA

4. Zhejiang Yugong Information Technology Limited Company, Hangzhou, Zhejiang 310051, China

5. College of Engineering, Ocean University of China, Qingdao, Shandong 266100, China

Abstract

Considering the competition between rescue points, we use artificial intelligence (AI) driven Internet of Thing (IoT) and regional material storage data to propose a multiobjective scheduling algorithm of flood control materials based on Pareto artificial bee colony (MSA_PABC). To address the scheduling of flood control materials, the multiple types of flood control materials, the multiple disaster sites, and entertain both emergency and fairness of rescue need to be considered comprehensively. The MSA_PABC has the constraints such as storage quantity constraint of warehouse materials, material demand constraint, and maximum transportation distance of flood control materials. We establish the scheduling optimization model of flood control materials for each disaster rescue point and the total scheduling optimization model for all flood control materials. Then, MSA_PABC uses the modified Pareto artificial bee colony algorithm to solve the multiobjective models. Three types of initialization strategies are proposed to calculate the fitness of each rescue point and the overall evaluation value of the food source. We propose the employ bee operations such as niche technology and local search of the variable neighborhood, the onlooker bee operations such as Pareto nondominated sorting and crossover operation, the scout bee operations such as maximum evolutionary threshold, and end elimination mechanism. Finally, our proposed solution obtains the nondominated solution set and its optimal solution. The experimental results show that no matter how the number of rescue points changes, MSA_PABC can find the nondominated solution set and optimal solution quickly. It improves the convergence rate of MSA_PABC and material satisfaction rate. Our solution also reduces the average maximum transportation distance, the standard deviation of maximum transportation distance, and the standard deviation of material satisfaction rate. The evaluation also demonstrates MSA_PABC outperforms the state-of-arts such as ABC (artificial bee colony), NSGA2 (nondominated sorting genetic algorithm 2), and MOPSO (multiobjective particle swarm optimization).

Funder

Project Intelligentization and Digitization for Airline Revolution

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3