A New Design of Metaheuristic Search Called Improved Monkey Algorithm Based on Random Perturbation for Optimization Problems

Author:

Tunay Mustafa1ORCID

Affiliation:

1. Department of Computer Engineering, Istanbul Gelisim University, Istanbul, Turkey

Abstract

The aim of this paper is to present a design of a metaheuristic search called improved monkey algorithm (MA+) that provides a suitable solution for the optimization problems. The proposed algorithm has been renewed by a new method using random perturbation (RP) into two control parameters (p1 and p2) to solve a wide variety of optimization problems. A novel RP is defined to improve the control parameters and is constructed off the proposed algorithm. The main advantage of the control parameters is that they more generally prevented the proposed algorithm from getting stuck in optimal solutions. Many optimization problems at the maximum allowable number of iterations can sometimes lead to an inferior local optimum. However, the search strategy in the proposed algorithm has proven to have a successful global optimal solution, convergence optimal solution, and much better performance on many optimization problems for the lowest number of iterations against the original monkey algorithm. All details in the improved monkey algorithm have been represented in this study. The performance of the proposed algorithm was first evaluated using 12 benchmark functions on different dimensions. These different dimensions can be classified into three different types: low-dimensional (30), medium-dimensional (60), and high-dimensional (90). In addition, the performance of the proposed algorithm was compared with the performance of several metaheuristic algorithms using these benchmark functions on many different types of dimensions. Experimental results show that the improved monkey algorithm is clearly superior to the original monkey algorithm, as well as to other well-known metaheuristic algorithms, in terms of obtaining the best optimal value and accelerating convergence solution.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3