Towards AI-Based Traffic Counting System with Edge Computing

Author:

Dinh Duc-Liem1ORCID,Nguyen Hong-Nam1ORCID,Thai Huy-Tan1ORCID,Le Kim-Hung1ORCID

Affiliation:

1. University of Information Technology-VNU-HCM, Ho Chi Minh City, Vietnam

Abstract

The recent years have witnessed a considerable rise in the number of vehicles, which has placed transportation infrastructure and traffic control under tremendous pressure. Yielding timely and accurate traffic flow information is essential in the development of traffic control strategies. Despite the continual advances and the wealth of literature available in intelligent transportation system (ITS), there is a lack of practical traffic counting system, which is readily deployable on edge devices. In this study, we introduce a low-cost and effective edge-based system integrating object detection models to perform vehicle detecting, tracking, and counting. First, a vehicle detection dataset (VDD) representing traffic conditions in Vietnam was created. Several deep learning models for VDD were then examined on two different edge device types. Using this detection, we presented a lightweight counting method seamlessly combining with a traditional tracking method to increase counting accuracy. Finally, the traffic flow information is obtained based on counted vehicle categories and their directions. The experiment results clearly indicate that the proposed system achieves the top inference speed at around 26.8 frames per second (FPS) with 92.1% accuracy on the VDD. This proves that our proposal is capable of producing high-accuracy traffic flow information and can be applicable to ITS in order to reduce labor-intensive tasks in traffic management.

Funder

Vietnam National University Ho Chi Minh City

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference68 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving traffic light systems using Deep Q-networks;Expert Systems with Applications;2024-10

2. Underwater Pipeline Detection using Deep Learning Techniques;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20

3. Analyzing Inference Workloads for Spatiotemporal Modeling;2024

4. Artificial Intelligence-Enabled Edge Computing: Necessity of Next Generation Future Computing System;Internet of Things;2024

5. Xavier Vision: Pioneering Autonomous Vehicle Perception with YOLO v8 on Jetson Xavier NX;2023 IEEE Pune Section International Conference (PuneCon);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3