A Hybrid Crack Detection Approach for Scanning Electron Microscope Image Using Deep Learning Method

Author:

Zhao Lun12,Pan Yunlong3,Wang Sen3ORCID,Zhang Liang1ORCID,Islam Md Shafiqul4

Affiliation:

1. Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

4. Department of Mechanical Engineering, Faculty of Engineering, Blekinge Institute of Technology, 37179 Karlskrona, Sweden

Abstract

The scanning electron microscope (SEM) is widely used in the analysis and research of materials, including fracture analysis, microstructure morphology, and nanomaterial analysis. With the rapid development of materials science and computer vision technology, the level of detection technology is constantly improving. In this paper, the deep learning method is used to intelligently identify microcracks in the microscopic morphology of SEM image. A deep learning model based on image level is selected to reduce the interference of other complex microscopic topography, and a detection method with dense continuous bounding boxes suitable for SEM images is proposed. The dense and continuous bounding boxes were used to obtain the local features of the cracks and rotating the bounding boxes to reduce the feature differences between the bounding boxes. Finally, the bounding boxes with filled regression were used to highlight the microcrack detection effect. The results show that the detection accuracy of our approach reached 71.12%, and the highest mIOU reached 64.13%. Also, microcracks in different magnifications and in different backgrounds were detected successfully.

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3