A Noise-Tolerant Audio Encryption Framework Designed by the Application of S8 Symmetric Group and Chaotic Systems

Author:

Aziz Haris12ORCID,Gilani Syed Mushhad Mustuzhar1ORCID,Hussain Iqtadar3ORCID,Janjua Abdul Kashif2ORCID,Khurram Shahzada4ORCID

Affiliation:

1. University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan

2. U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan

3. Department of Mathematics, Statistics and Physics, Qatar University, Doha 2713, Qatar

4. Department of Information Security, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Abstract

The recent decade has witnessed an exponential surge of digital content, especially multimedia and its applications. The security requirements of these innovative platforms necessitate the significance of enhancing advanced encryption schemes. In this paper, a novel encryption scheme is presented for real-time audio applications. The framework of the proposed scheme is grounded on the principles of confusion and diffusion. The confusion incorporates nonlinearity by the application of Mordell elliptic curves (MEC) and a symmetric group of permutations S8. The endurance of the proposed scheme is further enriched through the application of chaotic maps. The proposed scheme is intended to cater requirements of real-time voice communications in defense applications particularly warzones. The adoption of a modular design and fusion of chaotic maps makes the algorithm viable for numerous real-time audio applications. The security can further be enriched by incorporating additional rounds and number of S-boxes in the algorithm. The security and resistance of the algorithm against various attacks are gaged through performance evaluation and security measurements. The audio encryption scheme has the ability to tolerate noise triggered by a channel or induced by an invader. The decryption was successful and the resultant output was audible for noisy data. The overall results depict that the proposed audio encryption scheme contains an excellent cryptographic forte with the minimum computational load. These characteristics allow the algorithm to be a hotspot for modern robust applications.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3