Premature Ventricular Contractions’ Detection Based on Active Learning

Author:

Zhang Xianrong1ORCID,Shafiq Muhammad2ORCID,Zheng Guijun3ORCID,Wan Junping1ORCID,Sun Zhe1ORCID

Affiliation:

1. Cyberspace Institute of Advanced Technology (CIAT), Guangzhou University, Guangzhou 510006, China

2. School of Computer Science & Technology, Harbin Institute of Technology, Harbin 150001, China

3. School of Software Engineering, University of Science and Technology of China, Hefei 230051, China

Abstract

Premature ventricular contractions (PVCs) are one of the most common cardiovascular diseases with high risk to a large population of patients. It has been shown that supervised learning algorithms can detect PVCs from beat-level ECG data. However, a huge human effort is needed in order to achieve an accurate detection rate. A convolutional autoencoder was trained in this work in an unsupervised fashion to extract features automatically with zero prior specialized knowledge. Random forest was adopted as a supervised algorithm trained on the features generated by the autoencoder. Various active learning selection strategies, uncertainty-based and diversity-based, were studied on top of the random forest. In each iteration of active learning, the training data are updated with newly selected samples and fed into the classifier. The performance on an independent validation set is recorded in each iteration. As a result, among the different uncertainty sampling strategies, the least confidence score shows a better F1 score of 0.85 than other methods. In between the two diversity-based strategies, the representative clustering sample had the best F1 score than the k-center-greedy algorithm. By comparing the performance of different active learning methods trained on half of the original data size with the same classifier trained on the full set, the F1 score of least confidence is still better than the full set. This study demonstrates that active learning could help reduce human annotation effort by achieving the same level of performance as the classifier trained on the fully annotated training data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference34 articles.

1. A PVC detection program

2. Robust detection of premature ventricular contractions using sparse signal decomposition and temporal features

3. PVC detection using a convolutional autoencoder and random forest classifier;M. Gordon

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3