Extent, Distribution, and Causes of Soil Acidity under Subsistence Farming System and Lime Recommendation: The Case in Wolaita, Southern Ethiopia

Author:

Laekemariam Fanuel1ORCID,Kibret Kibebew2

Affiliation:

1. Wolaita Sodo University, Department of Plant Science, P.O. Box 138, Wolaita Sodo, Ethiopia

2. Haramaya University, School of Natural Resources Management and Environmental Sciences, P.O. Box 138, Dire Dawa, Ethiopia

Abstract

Soil acidity is one of the most important environmental threats to the Ethiopian highlands where the livelihood of the majority of people is reliant on agriculture. Yet, information regarding its extent, distribution, causes, and lime requirement at a scale relevant to subsistence farming systems is still lacking. This study (1) investigates the extent and spatial distribution of soil acidity, (2) identifies factors attributing to soil acidification, and (3) predicts the lime requirement for major crops. A total of 789 soil samples were collected from arable lands in the Wolaita area which is mainly characterized by poor soil fertility and soil degradation in southern Ethiopia. Results revealed that the landscape is characterized by a gentle slope followed by strongly sloppy > flat > hilly topographies. Clay is the dominant soil textural class. A soil pH map, which is generated using geospatial analysis, demonstrates that 3.3, 78.0, and 18.7% of the total area were under strongly acidic, moderately acidic, and neutral soil reactions, respectively. The exchangeable acidity (Cmol(+)/kg) varied from nil to 5.1, whereas exchangeable Al ranged from 1.4 to 19.9 Cmol(+)/kg. The soil pH has shown a significantly ( p  < 0.001) negative association with clay content (r = −0.33), exchangeable Al (r = −61), exchangeable acidity (r = −0.58), and inorganic fertilizer application (r = −0.33). Increased rates of diammonium phosphate (DAP) (r2 = 0.91) and urea (r2 = 0.88) markedly elevated soil acidity. Conversely, manuring showed a significant ( p  < 0.001) and positive relationship with pH (r = 0.37) in which the increasing rate of manure significantly reduced acidification (r2 = 0.98). DAP and urea applications above 75 kg/ha lowered soil pH units by 0.56 and 0.48, respectively, <25 kg/ha while at the same time farmyard manure (FYM) at 4 t/ha raised pH by 0.75 units over the unfertilized field. Residue management significantly ( p  < 0.001) influenced soil pH wherein it ranged from 6.09 (complete residue removal) to 6.61 (residue incorporation). Changes in land use, cropping intensity, and socioeconomic status were also significantly attributed to soil acidification. To curb the effects of soil acidity, the lime requirement for common bean growing fields varied from zero to 6.6 t/ha, while for maize it was between zero and 4.3 t/ha. It is concluded that soil management interventions such as maintaining and incorporating crop residues, integrated use of organic and inorganic fertilizers, liming, and enhancing farmers’ awareness should be advocated to overcome soil acidification and improve soil fertility. In addition, introducing crops with traits that tolerate acidity and Al toxicity is also suggested.

Funder

Ministry of Education, Ethiopia

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3