Investigation on the Creep Failure Mechanism of Sandy Mudstone Based on Micromesoscopic Mechanics

Author:

Shi Xinshuai12,Jing Hongwen1,Chen Weiqiang13ORCID,Gao Yuan14,Zhao Zhenlong1

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

3. School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK

4. Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia

Abstract

In this paper, scanning electron microscope (SEM) tests and 3D scanning technologies were adopted to investigate the creep failure mechanism of sandy mudstone from a micromesoscopic view. The SEM test results showed that the fracture surface micromorphology of the specimens that suffered creep loading was more fractured and rougher. It was also found by the fractal analysis of the SEM microscopic images that the fractal dimensions of the creep failure specimens were larger than those of the uniaxial compression failure, indicating that the creep damage increased the irregularity and a larger degree of roughness fluctuation. The 3D scanning technologies combining with the 3D reconstruction methods proved that the crack expansion path of crept specimens was more complicated, showing a more prominent asperity height and slope angle. Finally, a mesostrain dilating microelement model of the sandy mudstone specimen’s fracture surface was proposed to prove that the dilatancy effect would be more pronounced in the creep process.

Funder

China University of Mining and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3