Analysis of Lateral Displacement Law of Deep Foundation Pit Support in Soft Soil Based on Improved MSD Method

Author:

Lei Gang12ORCID,Gong Xiaonan1

Affiliation:

1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China

2. Beijing Urban Construction Design & Development Group Company Limited, Beijing 100037, China

Abstract

Foundation pit envelope and foundation pit excavation solution design is a multidisciplinary problem that could be linked to a series of safety issues in the geotechnical engineering of an actual construction project. Moreover, the construction of large deep foundation pit in soft soil often faces greater risks and challenges as the support structure deforms more easily and unpredictably. In order to improve the deformation prediction of deep foundation pit engineering precision and efficiency and to ensure that the construction of deep foundation pit engineering is safe and efficient, in this article the traditional MSD (mobilizable strength design) theory research and analysis, combined with the Jinan formation characteristics of a tunnel in JInan, and new parameters were introduced to the original MSD method theory: the wall itself within the bending strain energy U and support compression elastic potential energy of V. A new law of conservation of energy is constructed, and finally, an optimized MSD method has been proposed, this method is shown in the article. Finally, the results of foundation pit deformation calculation were compared among the optimized MSD method, finite element calculation method, and field monitoring data analysis method, so as to demonstrate the reliability of the prediction system of optimized MSD method and finite element analysis method. The results show that, by optimizing the MSD calculation method, the horizontal displacement of the retaining wall varies depending on the excavation depth of the foundation pit and the form of internal support with the overall peak value of displacement between 0∼0.2% H (H being the excavation depth); the deformation of retaining wall increases gradually with the increase of excavation depth of the foundation pit, and the peak position of deformation gradually moves down with the excavation of foundation pit. The trend of these changes is consistent with the results of the finite element method and field data analysis method, proving that the optimized MSD method is reliable in predicting the deformation of the foundation pit under specific stratum conditions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference19 articles.

1. Deformation control technology for deep foundation pit of subway station in soft soil and rich water stratum;L. P. Sun;Building Construction,2011

2. Analysis of the deformation characteristics of deep excavations in soft clay;L. Li;China Civil Engineering Journal,2007

3. Ground deformations and soil–structure interaction of a multi-propped excavation in Shanghai soft clays

4. Analysis of deformation of support system for deep foundation pit in soft soil;F. J. Xu;Modern Transportation Technology,2018

5. Three-dimensional deformation behaviour of a multi-propped excavation at a “greenfield” site at Shanghai soft clay

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3