Multiscale Feature Learning Based on Enhanced Feature Pyramid for Vehicle Detection

Author:

Nguyen Hoanh1ORCID

Affiliation:

1. Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh, Vietnam

Abstract

Vehicle detection is a crucial task in autonomous driving systems. Due to large variance of scales and heavy occlusion of vehicle in an image, this task is still a challenging problem. Recent vehicle detection methods typically exploit feature pyramid to detect vehicles at different scales. However, the drawbacks in the design prevent the multiscale features from being completely exploited. This paper introduces a feature pyramid architecture to address this problem. In the proposed architecture, an improving region proposal network is designed to generate intermediate feature maps which are then used to add more discriminative representations to feature maps generated by the backbone network, as well as improving the computational cost of the network. To generate more discriminative feature representations, this paper introduces multilayer enhancement module to reweight feature representations of feature maps generated by the backbone network to increase the discrimination of foreground objects and background regions in each feature map. In addition, an adaptive RoI pooling module is proposed to pool features from all pyramid levels for each proposal and fuse them for the detection network. Experimental results on the KITTI vehicle detection benchmark and the PASCAL VOC 2007 car dataset show that the proposed approach obtains better detection performance compared with recent methods on vehicle detection.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference40 articles.

1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

2. SSD: Single Shot MultiBox Detector

3. YOLO9000: better, faster, stronger,;J. Redmon

4. Feature pyramid networks for object detection;T. Lin

5. Focal loss for dense object detection;T. Lin

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3