Sirtuin 1 Induces Choroidal Neovascularization and Triggers Age-Related Macular Degeneration by Promoting LCN2 through SOX9 Deacetylation

Author:

Zhao Su12,Huang Zhi3,Jiang Hao1,Xiu Jiangfan3,Zhang Liying1,Long Qiurong1,Yang Yuhan1,Yu Lu1,Lu Lu4ORCID,Gu Hao1ORCID

Affiliation:

1. Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550002, China

2. School of Clinical Medicine, Guizhou Medical University, Guiyang 550002, China

3. School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China

4. Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen 5180403, China

Abstract

Increasing studies have identified the function of sirtuin-1 (SIRT1) in ocular diseases. Hence, this study is aimed at exploring the potential role of SIRT1 in choroidal neovascularization- (CNV-) induced age-related macular degeneration (AMD) development and the associated mechanism. Expression of SIRT1/SOX9/LCN2 in the hypoxic cells was determined, and their interactions were predicted by bioinformatics websites and followed by the verification by luciferase assay and chromatin immunoprecipitation (ChIP). Their in vitro effects on hypoxic cells concerning cell viability, apoptosis, migration, and angiogenesis were detected through gain- and loss-of-function assays. Besides, their in vivo effect was explored using the established CNV mouse models. Highly expressed LCN2, SOX9, and SIRT1 were observed in hypoxic cells. LCN2 was increased by SOX9 and SIRT1 deacetylated SOX9 to promote its nuclear translocation, which further inhibited the viability of human retinal pigment epithelial cells and promoted cell apoptosis and angiogenesis as well as CNV-induced AMD formation. The relieving role of LCN2 inhibition on CNV-induced AMD without toxicity for mice was also demonstrated by in vivo experiments. Overall, SIRT1 promoted the formation of CNV-induced AMD through SOX9 deacetylation-caused LCN2 upregulation, representing a promising target for CNV-induced AMD management.

Funder

Graduate Education Innovation Project of Guizhou Provincial Department of Education

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3