A Deep Learning Anomaly Detection Framework for Satellite Telemetry with Fake Anomalies

Author:

Wang Yakun1ORCID,Gong Jianglei12,Zhang Jie1,Han Xiaodong1ORCID

Affiliation:

1. Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing, China

2. School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China

Abstract

Reducing satellite failures and keeping satellites healthy in orbit are important issues. Current satellite systems have developed modules to detect anomalies on board. However, they only target a subset of anomaly types and heavily rely on expert knowledge. To address these limitations, this paper proposes a data-driven anomaly detection framework to detect point anomalies. We first propose the Deviation Divide Mean over Neighbors (DDMN) method to figure out the fake anomaly problem caused by data errors in the satellite telemetry data. Then, we use the Long Short-Term Memory (LSTM), a deep learning method, to model the multivariable time-series data, and a Gaussian model to detect anomalies. We applied our approach to the telemetry data collected from sensors on an in-orbit satellite for more than two years and demonstrate its superiority. Moreover, we explored what conditions could lead to false alarms. The approach proposed has been deployed to the ground station to monitor the health status of the in-orbit satellites.

Funder

Key Research Program

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference35 articles.

1. Statistical Methods for Outlier Detection in Space Telemetries

2. Mining distance-based outliers in near linear time with randomization and a simple pruning rule, in;S. D. Bay

3. ATHMoS: automated telemetry health monitoring system at GSOC using outlier detection and supervised machine learning;C. OMeara

4. General purpose data-driven system monitoring for space operations;D. Iverson

5. Improving Spacecraft Health Monitoring with Automatic Anomaly Detection Techniques

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3