Application of the Single-Stage Process of Dark Fermentation and Microbial Electrolysis to Improve Hydrogen Productivity from Water Hyacinth

Author:

Nguyen Phan Khanh Thinh1ORCID,Tran Thi Thu Ha2ORCID,Nguyen Thiet3ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea

2. Faculty of Environment, Ho Chi Minh City University of Natural Resources and Environment, Tan Binh District, Ho Chi Minh City, Vietnam

3. Department of Agricultural Technology, College of Rural Development, Can Tho University, 3/2 Street, Can Tho City 94000, Vietnam

Abstract

The production of hydrogen (H2) from water hyacinth (WH) can contribute to reducing both the negative impact of WH on ecosystems and dependence on fossil fuels. In this study, the combination of dark fermentation (DF) and microbial electrolysis cell (MEC) in a single reactor, namely, sDFMEC, was investigated to improve the H2 productivity of WH. Furthermore, the intermittently applied voltage (I-Eapp) scheme and various methane (CH4) inhibition methods, including air exposure, heat treatment, and chloroform (CHCl3) addition, were applied for performance enhancement purposes. The findings indicated that with a sufficient duty time of external energy input (less than 1 hour), the intermittent mode can enhance the performance of WH-fed sDFMEC but does not significantly inhibit CH4 formation. While air exposure and heat treatment damaged both methanogens and exoelectrogens, lowering sDFMEC performance, additional CHCl3 showed the best selective and long-term inhibition on methanogens (over 350 operation hours without further addition). Overall, the combination of the I-Eapp scheme and CHCl3 applied in WH-fed sDFMEC achieved a yield of 670.1 ± 15.2 mL H 2 / g VS , around 160% higher than the normal condition.

Funder

Gachon University

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3