A Simulation-Based Study for Progressive Estimation of Population Mean through Traditional and Nontraditional Measures in Stratified Random Sampling

Author:

Javed Maria1ORCID,Irfan Muhammad1ORCID,Bhatti Sajjad Haider1ORCID,Onyango Ronald2ORCID

Affiliation:

1. Department of Statistics, Government College University, Faisalabad, Pakistan

2. Department of Applied Statistics, Financial Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya

Abstract

This study suggests a new optimal family of exponential-type estimators for estimating population mean in stratified random sampling. These estimators are based on the traditional and nontraditional measures of auxiliary information. Expressions for the bias, mean square error, and minimum mean square error of the proposed estimators are derived up to first order of approximation. It is observed that proposed estimators perform better than the traditional estimators (unbiased, combined ratio, and combined regression) and other recent estimators. A real dataset is used to highlight the applicability of proposed estimators. In addition, a simulation study is carried out to assess the performance of new family as compared to other estimators.

Publisher

Hindawi Limited

Subject

General Mathematics

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3