Isolation and Characterization of Lactic Acid Bacteria from Fermented Milk Produced in Jimma Town, Southwest Ethiopia, and Evaluation of their Antimicrobial Activity against Selected Pathogenic Bacteria

Author:

Goa Tigistu1ORCID,Beyene Getenet2,Mekonnen Mekidim2,Gorems Kasahun3

Affiliation:

1. College of Natural and Computational Science, Department of Biology, Wolkite University, Ethiopia

2. Faculty of Health Sciences, School of Medical Laboratory Sciences, Department of Medical Microbiology, Jimma University, Ethiopia

3. St Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia

Abstract

Background. Raw milk is usually contaminated with pathogenic bacteria. Fermentation of milk is important to inhibit the growth of contaminants, spoilage, and pathogenic bacteria. The objective of this study was to isolate lactic acid bacteria from fermented milk and evaluate their antimicrobial activity against selected pathogenic bacteria. Methods. Laboratory-based experimental study design was conducted from May-July, 2021.Three samples of Ergo (each of 250 ml) were collected from Jimma town. Lactic acid bacteria (LAB) isolates were identified through integrated phenotypic techniques. Further identification was conducted through using API 50 CHL strips. Antimicrobial activities (AMAs) of LAB isolates were tested against clinical isolates of E. coli, S. aureus, and Salmonella spp. using agar well diffusion method. The data were analyzed by using SPSS software version 21 and Microsoft Excel spreadsheet. Tables and figures were applied to describe characteristics of data. Results. Twelve LAB isolates were identified. Those LAB isolates include six Lactococcus lactis subsp. lactis, Lactobacillus acidophilus (2), Lactiplantibacillus plantarum (1), Limosilactobacillus fermentum (2), and Leuconostoc lactis (1). Based on primary screening of LAB, isolates/strains ESCIa, ESBIa, and ESCIc show strong AMA against S. aureus, E. coli, and Salmonella spp. The CFS of ESCIc showed the highest AMA against S. aureus and Salmonella spp. with a zone of inhibition of 14.12 ± 1.6 mm and 12.9 ± 3.6 mm , respectively, while ESBIa showed the highest AMA against E. coli with a zone of inhibition of 13.5 ± 2.1 mm . The CFSs of selected LAB strains were heat tolerant at varying temperatures up to 100°C. The CFSs of selected LAB strains were inactivated by proteinase enzymes, but they are not inactivated with amylase enzymes. Conclusions and Recommendation. All 12 LAB isolates exhibited antimicrobial activity against tested bacterial strains. Lactobacillus isolates showed the highest antagonistic activity on tested indicator strains. Thus, they are possible alternatives to antibiotics in the era of antimicrobial resistance. S. aureus was the most sensitive to antimicrobial effects/agents of selected LAB isolates. Consumption of fermented foods is advisable since they support the growth of healthy GIT microbiota. Fermentation serves as biopreservation of food. However, analysis of probiotic features and in vivo probiotic effects of those LAB isolates will be subject of future research/study.

Funder

Jimma University

Publisher

Hindawi Limited

Subject

Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3