Minocycline Decreases Liver Injury after Hemorrhagic Shock and Resuscitation in Mice

Author:

Czerny Christoph12,Kholmukhamedov Andaleb1,Theruvath Tom P.1,Maldonado Eduardo N.1,Ramshesh Venkat K.1,Lehnert Mark2,Marzi Ingo2,Zhong Zhi1,Lemasters John J.13

Affiliation:

1. Center for Cell Death, Injury & Regeneration, Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA

2. Department of Trauma Surgery, J. W. Goethe University, 60590 Frankfurt am Main, Germany

3. Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA

Abstract

Patients that survive hemorrhage and resuscitation (H/R) may develop a systemic inflammatory response syndrome (SIRS) that leads to dysfunction of vital organs (multiple organ dysfunction syndrome, MODS). SIRS and MODS may involve mitochondrial dysfunction. Under pentobarbital anesthesia, C57BL6 mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer’s solution containing minocycline, tetracycline (both 10 mg/kg body weight) or vehicle. Serum alanine aminotransferase (ALT), necrosis, apoptosis and oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization was assessed by intravital microscopy. After H/R with vehicle or tetracycline, ALT increased to 4538 U/L and 3999 U/L, respectively, which minocycline decreased to 1763 U/L (P<0.01). Necrosis and TUNEL also decreased from 24.5% and 17.7 cells/field, respectively, after vehicle to 8.3% and 8.7 cells/field after minocycline. Tetracycline failed to decrease necrosis (23.3%) but decreased apoptosis to 9 cells/field (P<0.05). Minocycline and tetracycline also decreased caspase-3 activity in liver homogenates. Minocycline but not tetracycline decreased lipid peroxidation after resuscitation by 70% (P<0.05). Intravital microscopy showed that minocycline preserved mitochondrial polarization after H/R (P<0.05). In conclusion, minocycline decreases liver injury and oxidative stress after H/R by preventing mitochondrial dysfunction.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Hepatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3