Identification of a Novel Risk Model: A Five-Gene Prognostic Signature for Pancreatic Cancer

Author:

Wang Xiaoguang1ORCID,Ni Man1ORCID,Han Daxiong1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China

Abstract

Objective. Biomarkers for pancreatic cancer (PCa) prognosis provide evidence for improving the survival outcome of this disease. This study aimed to identify a prognostic risk model based on gene expression profiling of microarray bioinformatics analysis. Methods. Prognostic immune genes in the TCGA-PAAD cohort were identified using the univariate Cox regression and Kaplan–Meier survival analysis. Multivariate Cox regression (stepAIC) was used to identify prognostic genes from the top 20 hub genes in the protein-protein interaction (PPI) network. A prognostic risk model was established and its performance in predicting the overall survival in PCa was validated in GSE62452. Gene mutations and infiltration immune cells in PCa tumors were analyzed using online databases. Results. Univariate Cox regression and Kaplan–Meier survival analyses identified 128 prognostic genes. Multivariate Cox regression (stepAIC) identified five prognostic genes (PLCG1, MET, TNFSF10, CXCL9, and TLR3) out of the 20 hub genes in the PPI network. A prognostic risk model was established using the signature of five genes. This model had moderate to high accuracies (AUC > 0.700) in predicting 3-year and 5-year overall survival in TCGA and GSE62452 cohorts. The Kaplan–Meier survival analysis showed that high-risk scores were correlated with poor survival outcomes in PCa ( p < 0.05 ). Also, mutations in the five genes were related to poor survival. The five genes were related to multiple immune cells. Conclusions. The prognostic risk model was significantly correlated with the survival in PCa patients. This model modulated PCa tumor progression and prognosis by regulating immune cell infiltration.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3