Affiliation:
1. Department of Art, Anhui Jianzhu University, Hefei, AnHui 230041, China
Abstract
With the continuous development of the field of building optimization, more and more optimization methods have sprung up, among which there are many kinds of intelligent optimization algorithms. This kind of intelligent optimization algorithm usually relies on the traditional building performance simulation method to obtain the building performance index for optimization. However, intelligent optimization algorithms generally require large-scale calculations. At the same time, the time required for building performance simulation is often limited by the complexity of building models and the configuration of computers, which leads to a long time for performance optimization, which cannot give efficient and accurate feedback to designers in engineering. Building performance optimization methods based on intelligent optimization algorithms are mainly used in scientific research and are difficult to put into practical projects. Therefore, this paper builds an accurate and efficient platform for building performance prediction and optimization to help designers make decisions combined with BP neural network and the SPEA-II multiobjective optimization algorithm. Besides, the optimization results of the case are quantitatively and qualitatively analyzed and presented in visual form based on the BP neural network prediction model. Quantitative analysis includes the evolution process of solution set, convergence process, and comprehensive quality evaluation of solution set. Qualitative analysis includes Pareto frontier and optimal architectural scheme analysis. Finally, the conclusion shows that the platform prediction and optimization can give accurate and reliable optimal solution, and the optimal building scheme is reasonable and has high engineering application value.
Funder
New Liberal Arts, New Medical Research and Reform Practice Project
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献