Impact of Femoral Neck Cortical Bone Defect Induced by Core Decompression on Postoperative Stability: A Finite Element Analysis

Author:

Yuan Daizhu123ORCID,Wu Zhanyu12ORCID,Luo Siwei12ORCID,Zou Qiang12ORCID,Zou Zihao12ORCID,Ye Chuan12ORCID

Affiliation:

1. Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China

2. Center for Tissue Engineering and Stem Cells, Guizhou Medical University, Guiyang 550004, China

3. Sports Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China

Abstract

Objective. To analyze the impact of femoral neck cortical bone defect induced by core decompression on postoperative biomechanical stability using the finite element method. Methods. Five finite element models (FEMs) were established, including the standard operating model and four models of cortical bone defects at different portions of the femoral neck (anterior, posterior, superior, and inferior). The maximum stress of the proximal femur was evaluated during normal walking and walking downstairs. Results. Under both weight-bearing conditions, the maximum stress values of the five models were as follows: femoral neck (inferior) > femoral neck (superior) > femoral neck (posterior) > femoral neck (anterior) > standard operation. Stress concentration occurred in the areas of femoral neck cortical bone defect. Under normal walking, the maximum stress of four bone defect models and its increased percentage comparing the standard operation were as follows: anterior (17.17%), posterior (39.02%), superior (57.48%), and inferior (76.42%). The maximum stress was less than the cortical bone yield strength under normal walking conditions. Under walking downstairs, the maximum stress of four bone defect models and its increased percentage comparing the standard operation under normal walking were as follows: anterior (36.75%), posterior (67.82%), superior (83.31%), and inferior (103.65%). Under walking downstairs conditions, the maximum stress of bone defect models (anterior, posterior, and superior) was less than the yield strength of cortical bone, while the maximum stress of bone defect model (inferior) excessed yield strength value. Conclusions. The femoral neck cortical bone defect induced by core decompression can carry out normal walking after surgery. To avoid an increased risk of fracture after surgery, walking downstairs should be avoided when the cortical bone defect is inferior to the femoral neck except for the other three positions (anterior, posterior, and superior).

Funder

Science and Technology Bureau of Guiyang City

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3