Identifying a Six-Gene Signature Predicting Response to TACE in Hepatocellular Carcinoma by Bioinformatics Analysis

Author:

Yao Xin1,Yin Xin2,Lu Wei1,Cao Leitao3ORCID

Affiliation:

1. Vascular Department, Tianjin Hospital of ITCWM Nankai Hospital, China

2. Traditional Chinese Medicine Department, Tianjin Hexi District Meijiang Street Community Health Service Center, China

3. Vascular Surgery, Dingzhou City People’s Hospital, China

Abstract

Background and Aim. With regard to patients with intermediate-stage, irresectable hepatocellular carcinoma (HCC), transcatheter arterial chemoembolization (TACE) is the mainstay of treatment. There is an urgent clinical requirement to identify reliable biomarkers to predict the response of HCC patients to TACE treatment. We aimed to identify a gene signature for predicting TACE response in HCC patients based on bioinformatics analysis. Methods. We downloaded the gene expression profile GSE104580 based on 147 tumor samples from 81 responders to TACE and 66 nonresponders from the Gene Expression Omnibus (GEO) database. Then, we randomly divided the 147 tumor samples into a training set ( n = 89 ) and a validation set ( n = 58 ) and screened differentially expressed genes (DEGs) in the training set. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to annotate functions of the DEGs. The DEGs were mapped into the STRING website for constructing protein-protein interaction (PPI). The predictive value of the candidate genes by receiver-operating characteristic (ROC) curves was further verified in the validation set. Results. We totally found 158 DEGs (92 upregulated genes and 66 downregulated genes) in the training set. The GO enrichment analysis revealed that DEGs were significantly enriched in metabolic and catabolic processes, such as drug metabolic process, fatty acid metabolic process, and small molecule catabolic process. The KEGG pathway analysis revealed that the DEGs were mainly concentrated in drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and chemical carcinogenesis. We identified 6 candidate genes (CXCL8, AFP, CYP1A1, MMP9, CYP3A4, and SERPINC1) based on the PPI network of the DEGs, which had high predictive value in HCC response to TACE with an area under the curve (AUC) value of 0.875 and 0.897 for the training set and validation set, respectively. Conclusion. We identified a six-gene signature which might be biomarkers for predicting HCC response to TACE by a comprehensive bioinformatics analysis. However, the actual functions of these genes required verification.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3