Diagnosis of Multiple Sclerosis Disease in Brain Magnetic Resonance Imaging Based on the Harris Hawks Optimization Algorithm

Author:

Iswisi Amal F. A.1,Karan Oğuz1,Rahebi Javad1ORCID

Affiliation:

1. School of Engineering and Architecture, Electrical and Computer Engineering, Altınbaş University, Istanbul, Turkey

Abstract

The damaged areas of brain tissues can be extracted by using segmentation methods, most of which are based on the integration of machine learning and data mining techniques. An important segmentation method is to utilize clustering techniques, especially the fuzzy C-means (FCM) clustering technique, which is sufficiently accurate and not overly sensitive to imaging noise. Therefore, the FCM technique is appropriate for multiple sclerosis diagnosis, although the optimal selection of cluster centers can affect segmentation. They are difficult to select because this is an NP-hard problem. In this study, the Harris Hawks optimization (HHO) algorithm was used for the optimal selection of cluster centers in segmentation and FCM algorithms. The HHO is more accurate than other conventional algorithms such as the genetic algorithm and particle swarm optimization. In the proposed method, every membership matrix is assumed as a hawk or an HHO member. The next step is to generate a population of hawks or membership matrices, the most optimal of which is selected to find the optimal cluster centers to decrease the multiple sclerosis clustering error. According to the tests conducted on a number of brain MRIs, the proposed method outperformed the FCM clustering and other techniques such as the k -NN algorithm, support vector machine, and hybrid data mining methods in accuracy.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3