Dual Strategy of Reconfiguration with Capacitor Placement for Improvement Reliability and Power Quality in Distribution System

Author:

Nasser Hussain Ali1ORCID,Rafa Abed Wathiq2ORCID,Muneer Yaqoob Mohanad1ORCID

Affiliation:

1. Middle Technical University, Electrical Engineering Technical College, Department of Electrical Power Engineering Techniques, Baghdad, Iraq

2. Middle Technical University, Institute of Technology, Electrical Power Department, Baghdad, Iraq

Abstract

The demand for electrical power has been increasing rapidly due to higher industrial output and deregulation. The concerns have been raised about the ability of distribution networks to provide adequate power for the customers with an appropriate level of quality and reliability. To ameliorate the performance of the radial distribution system (RDS), the optimal capacitor placement (OCP), and the distribution system reconfiguration (DSR) strategies have been implemented in the current work to achieve the highest power quality and system reliability in a balanced manner at the same time. Three different scenarios were implemented, the first scenario of dual sequential (OCP after DSR), the second scenario of dual sequential (DSR after OCP), and the third scenario of dual simultaneous (DSR with OCP). These scenarios were tested on typical 33 and 69 bus IEEE RDS using the binary salp swarm algorithm (BSSA) based on the multiobjective functions (MOFs), in order to identify the most effective scenario performance that achieved the highest power quality and system reliability. The MOF was formulated to improve the power quality by increasing the voltage buses and reducing the power losses. While the constraints include limits of system reliability indices to provide optimal constraints on negative interactions of power quality. The simulation results demonstrate that the second scenario of dual sequential (DSR after OCP) provide superior in comparison with the first scenario of dual sequential (OCP after DSR) for enhancing the RDS reliability indices, voltage buses, and reducing power losses. Finally, the best result can be realized with dual simultaneous (DSR and OCP) in the third scenario compared to the dual sequential scenarios.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3