A Two-Dimensional Planar Fracture Network Model for Broken Rock Mass Based on Packer Test and Fractal Dimension

Author:

Wen Lei1ORCID,Guo Ping1ORCID,Zhang Xin1,Lu Wen-qiang2ORCID,Liu Zhong Fang1

Affiliation:

1. School of Architectural Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China

2. Chongqing Institute of Green and Intelligent, Technology Chinese Academy of Science, Chongqing 400722, China

Abstract

Broken rock masses with the complexity and concealment widely exist in nature such as underground mine, collapse column, and zone. It is extremely difficult to model fracture networks and to simulate water diffusion for broken rock masses. To explore a reasonable fracture network model for broken rock masses, a new method for modeling a two-dimensional planar fracture network model is proposed in this paper. It includes packer test, empirical relationship, fractal width description, and symmetric expansion modeling. Then, the fluid-solid coupling is used to simulate the diffusion properties of water in the two-dimensional planar fracture network model. It is found that the diffusion velocities vmax and vmin do not appear in the fracture widths λmax and λmin. It indicates that the fracture widths λmax and λmin in the fracture network model for broken rock mass have little impact on the diffusion velocity. Furthermore, the fracture distribution pattern in the fracture network model is an important factor affecting the diffusion velocities vmax and vmin. The simulation results of water diffusion in the currently proposed model are almost consistent with the actual process of the packer test. Also, the validity of the two-dimensional planar fracture network model is verified by comparing the simulation results with the existing research.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3