Removal of Hexavalent Chromium by Using Sustainable Green Materials as Low-Cost Adsorbents

Author:

Li Qian1234ORCID,Huang Qing1234,Weng Fangqing1234,Hu Wenqian1,Liu Jiamin1,Luo Jiasheng1

Affiliation:

1. Department of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, China

2. Hubei Environmental Purification Material Science and Engineering Technology Research Center, Hubei University of Education, Wuhan 430205, China

3. Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Hubei University of Education, Wuhan 430205, China

4. Hubei Engineering Technology Center of Environmental Purification Materials, Hubei University of Education, Wuhan 430205, China

Abstract

The possibility of using three types of NaOH-treated tea residues (green tea, pu-erh, and tieguanyin) as low-cost adsorbents for Cr(VI) treatment was investigated. The surface charge, composition, morphology, structure, and functional groups in the obtained biosorbents were characterized by pHzpc, cellulose content, SEM, BET, XRD, and FTIR spectroscopy. The nonlinear pseudo-first-order, pseudo-second-order, and Elovich models were used to investigate adsorption kinetics at various initial concentrations. The adsorption processes were more consistent with the pseudo-second-order kinetic model in the range of 5-50 mg L-1. The adsorption isotherm at 298 K was described using the nonlinear Langmuir, Freundlich, Temkin-Pyzhev, and Dubinin-Radushkevich models, indicating that the process was favorable and complex with maximum adsorption amounts of 6.15, 19.50, and 12.31 mg g-1 for green tea, pu-erh, and tieguanyin residues, respectively. Thermodynamic analysis revealed that the adsorption was a spontaneous, endothermic process. The results demonstrated that all materials had the potential to successfully remove Cr(VI) from the aqueous solution.

Funder

Hubei Provincial Department of Education

Publisher

SAGE Publications

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3