Reducing Dietary Protein Content by Increasing Carbohydrates Is More Beneficial to the Growth, Antioxidative Capacity, Ion Transport, and Ammonia Excretion of Nile Tilapia (Oreochromis niloticus) under Long-Term Alkalinity Stress

Author:

Liu Wei1ORCID,Xu Chang1ORCID,Li Zhao1,Chen Liqiao2ORCID,Wang Xiaodan2ORCID,Li Erchao12ORCID

Affiliation:

1. Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China

2. School of Life Sciences, East China Normal University, Shanghai 200241, China

Abstract

Alkalinity stress is the main stress experienced by aquatic animals in saline–alkali water, which hinders the aquaculture development and the utilization of water resources. The two-factor (2 × 3) test was adopted to study the influence of dietary protein to carbohydrate ratios on the energy metabolism of Nile tilapia (Oreochromis niloticus) under different alkalinity stress levels. Three diets with different protein-carbohydrate ratios (P27/C35, P35/C25, and P42/C15) were fed to fish cultured in freshwater (FW, 1.3 mmol/L carbonate alkalinity) or alkaline water (AW, 35.7 mmol/L carbonate alkalinity) for 50 days. Ambient alkalinity decreased tilapia growth performance. Although ambient alkalinity caused oxidative stress and enhanced ion transport and ammonia metabolism in tilapia, tilapia fed the P27/C35 diet showed better adaptability than fish fed the other two diets in alkaline water. Further metabolomic analysis showed that tilapia upregulated all the pathways enriched in this study to cope with alkalinity stress. Under alkalinity stress, tilapia fed the P27/C35 diet exhibited enhanced pyruvate metabolism and purine metabolism compared with tilapia fed the P42/C15 diet. This study indicated that ambient alkalinity could significantly decrease growth performance and cause oxidative stress and osmotic regulation. However, reducing dietary protein content by increasing carbohydrates could weaken stress and improve growth performance, ion transport, and ammonia metabolism in tilapia under long-term hyperalkaline exposure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3