Analysis of Heat Release Processes inside Storage Facilities Containing Irradiated Nuclear Graphite

Author:

Pavliuk Alexander O.1ORCID,Bespala Evgeniy V.2ORCID,Kotlyarevskiy Sergey G.1ORCID,Novoselov Ivan Yu.3ORCID,Kotov Veleriy N.2

Affiliation:

1. Pilot and Demonstration Center for Decommissioning of Uranium-Graphite Nuclear Reactors, Avtodoga 13 St., 179a, Seversk 636000, Russia

2. Mining and Chemical Combine, Lenina St. 53, Zheleznogorsk 662972, Russia

3. National Research Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia

Abstract

The article is dedicated to the safety assessment of mixed storage of irradiated graphite and other types of radioactive waste accumulated during the operation of uranium-graphite reactors. The analysis of heat release processes inside storages containing irradiated nuclear graphite, representing a potential hazard due to the possible heating and, accordingly, the release of long-lived radionuclides during oxidation was carried out. The following factors were considered as the main factors that can lead to an increase in the temperature inside the storage facility: corrosion of metallic radioactive waste, the presence of fuel fragments, and also the random exposure of irradiated graphite to local sources of thermal energy (spark, etc.). It was noted in the work that the combined or separate influence of some factors can lead to an increase in the temperature of the onset of the initiation of Wigner energy release in graphite radwaste (Tin ≈ 90–100°C for the “Worst-case” graphite). The model of heat generation in the storage was developed based on the analysis of the features of graphite radioactive waste storage and Wigner energy release. The layered location of different types of waste (graphite and aluminum) and the local character of the distribution of heat sources were adopted in this model. The greatest heating is achieved if graphite radioactive waste is located near the concrete walls of the storage facility, as well as in direct contact with irradiated aluminum radioactive waste, which was shown in this paper.

Funder

Tomsk Polytechnic University

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3