Evaluation of Roundabout Safety Performance through Surrogate Safety Measures from Microsimulation

Author:

Giuffrè Orazio1,Granà Anna1ORCID,Tumminello Maria Luisa1,Giuffrè Tullio2,Trubia Salvatore2,Sferlazza Antonino3,Rencelj Marko4ORCID

Affiliation:

1. Department of Civil, Environmental, Aerospace, and Material Engineering, University of Palermo, Viale delle Scienze, Ed 8, 90128 Palermo, Italy

2. Kore University, Cittadella Universitaria, 94100 Enna, Italy

3. Department of Energy, Information Engineering and Mathematical Models, University of Palermo, Viale delle Scienze, Ed 8, 90128 Palermo, Italy

4. University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture, Slovenia

Abstract

The paper presents a microsimulation-based approach for roundabout safety performance evaluation. Based on a sample of Slovenian roundabouts, the vehicle trajectories exported from AIMSUN and VISSIM were used to estimate traffic conflicts using the Surrogate Safety Assessment Model (SSAM). AIMSUN and VISSIM were calibrated for single-lane, double-lane and turbo roundabouts using the corresponding empirical capacity function which included critical and follow-up headways estimated through meta-analysis. Based on calibration of the microsimulation models, a crash prediction model from simulated peak hour conflicts for a sample of Slovenian roundabouts was developed. A generalized linear model framework was used to estimate the prediction model based on field collected crash data for 26 existing roundabouts across the country. Peak hour traffic distribution was simulated with AIMSUN, and peak hour conflicts were then estimated with the SSAM applying the filters identified by calibrating AIMSUN and VISSIM. The crash prediction model was based on the assumption that the crashes per year are a function of peak hour conflicts, the ratio of peak hour traffic volume to average daily traffic volume and the roundabout outer diameter. Goodness-of-fit criteria highlighted how well the model fitted the set of observations also better than the SSAM predictive model. The results highlighted that the safety assessment of any road unit may rely on surrogate safety measures, but it strongly depends on microscopic traffic simulation model used.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3