Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX

Author:

Manoj I. V.1ORCID,Soni Hargovind2ORCID,Narendranath S.1ORCID,Mashinini P. M.2,Kara Fuat3ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India

2. Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg, South Africa

3. Düzce University Engineering, Faculty Department of Mechanical Engineering, Düzce, Turkey

Abstract

The Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries. Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining technique, can be employed in the machining of such alloys. In the present study, different input parameters which include pulse on time, wire span, and servo gap voltage were investigated. The cutting velocity, surface roughness, recast layer, and microhardness variations were examined on the WEDMed surface. The genetic algorithm was used to optimize the cutting velocity and surface roughness, thereby improving the overall quality of the product. The highest recast layer values were recorded as 25.8 µm, and the lowest microhardness was 170 HV. Response surface methodology and artificial neural network were employed for the prediction of cutting velocity and surface roughness. Artificial neural network prediction technique was the most efficient method for the prediction of response parameters as it predicted an error percentage lesser than 6%.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3