Evaluation and Monitoring of Endometrial Cancer Based on Magnetic Resonance Imaging Features of Deep Learning

Author:

Tao Jingxiong1ORCID,Wang Yi2ORCID,Liang Yi1ORCID,Zhang Aohua3ORCID

Affiliation:

1. Department of Radiology, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan 430010, China

2. Department of Medical Imaging, 74th Army Hospital of PLA, Guangzhou 510318, China

3. Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China

Abstract

This study was aimed to compare and analyze the magnetic resonance imaging (MRI) manifestations and surgical pathological results of endometrial cancer (EC) and to explore the clinical research of MRI in the diagnosis and staging of EC. Methods. 80 patients with EC admitted to the hospital were selected as the research objects. The ResNet network was used to optimize the network. When the depth was added, the accuracy of the model was improved, the network parameters were iteratively updated, and the damage function of the minimized network was obtained. The recognition efficiency of MRI images was analyzed using three network modes: shallow CNN network, Res-Net network, and optimized network. The images of EC patients were analyzed, and a quantitative and timed MRI was achieved using simulated datasets in deep learning neural networks, which provided the basis for the formulation of single-scan MRI parameters. All patients underwent preoperative MRI examination using coronal and sagittal T1WI and T2WI imaging. The results showed that the accuracy and specificity of T2 weighted imaging and enhanced scanning in MRI were 88.75% and 95%, respectively. Sensitivity was 87.5%, negative predictive value was 93.75%, and positive predictive value was 86.25%. By MRI examination, 80 cases of EC in patients with stage I diagnosis were 72 cases, accounting for 90%, with endometrial thickening and uneven enhancement. In conclusion, the MRI manifestations of EC are diversified, and MRI has a high value for the staging of EC. MRI examination is conducive to improving diagnostic accuracy.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3