Study on Properties of Magnesium Oxychloride Cement Solidified Soil

Author:

Wang Haoyu1,Zhang Jinbao2,Yan Xiaohui1,Xiong Rui1ORCID

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

2. Qinghai Transportation Holding Group Co., Ltd., Xining 810001, China

Abstract

Due to the poor performance of ordinary Portland cement (OPC) as a solidified soil road and the large pollution in the production process, environment-friendly magnesium oxychloride cement (MOC) was used as the soil curing agent to prepare the solidified soil, exploring the optimal ratio of various raw materials when MOC is used as a curing agent. Analyzing the properties of MOC solidified soil in the application of road subgrade. This paper tests compaction, mechanical properties, and durability of the MOC solidified soil, simulates the development trend of 7 days unconfined compressive strength of MOC solidified soil, and then analyzes the hydration process and strengthens the formation mechanism of MOC in solidified soil. The study found that the addition of MOC as a curing agent to the soil can effectively improve the compaction and mechanical properties of the soil. Matlab simulation found that when the MgO content is 5.5% to 6% and the ratio of raw materials MgO, MgCl2, and H2O is 2.45 : 1 : 14 to 6.3 : 1 : 14, the performance of MOC solidified soil is excellent. Fitting UCS data, it is found that MOC solidified soil has early strength characteristics. The excellent compaction and mechanical properties of MOC solidified soil are due to the formation of a small amount of phase 5 and layered Mg(OH)2 by the hydration of MOC, and the formation of amorphous gel with SiO2 in the soil. This reaction improves soil compaction and reduces internal porosity from a microscopic perspective. The strength loss rate of MOC solidified soil is higher after immersion in water at the initial stage of curing, but it is still better than that of traditional cement-based solidified soil. Poor performance after immersion in water is associated with disruption of the network-like structure. As an environment-friendly soil curing agent, MOC can be used in engineering practice with low environmental humidity.

Funder

QingHai Department of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference29 articles.

1. Microstructure evolution of soft clay under consolidation loading

2. Durability improvement of cement stabilized pavement base using natural rubber latex;B. Apinun;Transportation Geotechnics,2021

3. Study on tensile properties of cement-solid soft soil;S. Li;Journal of Central South University,2022

4. Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes

5. Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: Experimental and prediction studies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3